Introduction

 

Solar energy has become an increasingly popular alternative energy source worldwide. In recent years, Oman, a country known for its abundant sunlight, has been exploring the potential of solar energy as a sustainable and cost-effective solution to meet its growing energy needs. This article will delve into the current state of solar energy in Oman, its benefits, challenges, and future prospects.

The Importance of Solar Energy in Oman

  1. Abundant Sunlight: Oman is blessed with a high solar radiation potential due to its geographical location in the Arabian Peninsula. The country receives an average of 2,800 hours of sunshine per year, making it an ideal location for harnessing solar energy.
  2. Diversifying Energy Sources: Solar energy provides a means to diversify Oman’s energy mix, which is currently heavily reliant on fossil fuels, especially natural gas. By embracing solar power, the country can reduce its dependence on nonrenewable energy sources and improve energy security.
  3. Environmental Benefits: Solar energy is a clean and renewable energy source. By harnessing sunlight to generate electricity, Oman can significantly reduce its carbon footprint and mitigate the impacts of climate change. Solar power generation produces zero greenhouse gas emissions, making it an environmentally friendly alternative to traditional fossil fuel-based energy generation methods.

Current Scenario of Solar Energy in Oman

  1. Solar Projects: Oman has embarked on an ambitious plan to develop solar energy projects across the country. The government’s Renewable Energy Initiative aims to achieve a target of 30% renewable energy by 2030, with a considerable focus on solar power.
  2. Solar Farms: One of the key initiatives in Oman’s solar energy sector is the establishment of large-scale solar farms. These projects aim to generate significant amounts of electricity to meet the growing energy demand in the country. Notable solar farms include the Adam Solar Power Plant and the Ibri Solar Plant, which have a combined capacity of over 500 MW.
  3. Rooftop Solar Installations: In addition to large-scale projects, Oman is also encouraging the adoption of rooftop solar installations. These installations allow residents and businesses to generate their own solar power, reducing reliance on the national grid and lowering electricity bills. The government provides incentives and supports net metering schemes to promote the uptake of rooftop solar systems.

Challenges and Opportunities

  1. Cost: The initial investment required for setting up solar power projects can be a significant barrier. However, with advancements in technology and decreasing costs of solar panels, the overall cost of solar energy production has significantly reduced in recent years. This trend makes solar energy increasingly financially viable in Oman.
  2. Grid Integration: Integration of solar energy into the existing power grid infrastructure poses technical challenges. However, advancements in smart grid technologies and energy storage solutions are helping to address these issues. Implementing grid-scale energy storage systems can enable smooth integration of solar power and ensure a stable and reliable energy supply.
  3. Skills Development: The rapid development of the solar energy sector in Oman requires skilled personnel to design, install, and maintain solar power systems. Investing in workforce training programs and educational initiatives focused on renewable energy can ensure a competent workforce to support the growth of the sector.

Future Prospects and Conclusion

Solar energy in Oman holds immense potential and promises a bright future for sustainable energy generation. The government’s commitment to renewable energy, combined with its abundant sunlight resources, positions Oman as an attractive destination for solar investments. As the cost of solar power continues to decline and technological advancements enable better integration into the power grid, solar energy is expected to play a pivotal role in Oman’s energy transition.

In conclusion, solar energy in Oman offers a viable and sustainable solution to meet the country’s energy needs. Harnessing the power of the sun not only reduces reliance on fossil fuels but also contributes to the preservation of the environment. As solar projects continue to expand and innovative solutions emerge, Oman has the potential to become a regional leader in renewable energy.

 

As the world shifts towards renewable energy, Oman is also taking steps to reduce its dependence on non-renewable sources of energy. One of the most promising forms of renewable energy in Oman is solar power, with several large-scale solar PV projects already underway.

In this article, we’ll take a closer look at solar PV projects in Oman, including their current status, benefits, and opportunities for investors.

 

Oman has already made significant progress in harnessing the power of the sun. The 105 MW Amin Solar PV project, located in the southern region of Amin, is one of the largest utility-scale solar PV projects in the region. Developed by Saudi Arabia’s ACWA Power, the project is expected to supply electricity to around 15% of Oman’s population.

In addition to the Amin Solar PV project, several other solar PV projects are currently underway in Oman. The 1 GW Ibri II solar PV project is currently under construction and is expected to be completed by 2024. Other planned solar PV projects include the 500 MW Manah Solar I and 1 GW Manah Solar II projects, which have been tendered by Oman Power and Water Procurement Company (OPWP).

Benefits of Solar PV Projects in Oman

Solar PV projects in Oman offer a range of benefits, both for the environment and the economy. Here are some of the key advantages:

Renewable Energy:

Solar PV projects are a clean and sustainable source of energy, producing electricity without emitting greenhouse gases or other harmful pollutants. This helps to reduce Oman’s carbon footprint and improve air quality.

Energy Security:

By diversifying its energy mix, Oman can reduce its dependence on non-renewable sources of energy and improve its energy security. This can help to mitigate the risks associated with global oil price fluctuations.

Economic Development:

Solar PV projects can provide significant economic benefits for Oman, including job creation, local procurement, and technology transfer. In addition, solar PV projects can attract foreign investment and support the development of local industries and supply chains.

 

 

 

Solar PV projects in Oman offer a range of benefits for both the environment and the economy. With several large-scale projects already underway and more planned for the future, there are plenty of opportunities for investors to participate in Oman’s transition towards renewable energy. By investing in solar PV projects, Oman can reduce its reliance on non-renewable sources of energy, improve its energy security, and contribute to a more sustainable future.

The green hydrogen is a clean, renewable and eco-friendly way to produce hydrogen. Hydrogen is a key component of fuel cells and can be used to create electricity, heat or water. Hydrogen can be produced from water using electrolysis. This process uses electricity to split the hydrogen from oxygen. The green hydrogen production process utilises renewable energy sources, such as solar or wind power, to power the electrolysis process. This means that no fossil fuels are used to produce hydrogen and there are no emissions released into the atmosphere during production. In a commercial facility the green hydrogen production process can be more efficient and cost effective than traditional methods. Currently there are limited commercial facilities that produce hydrogen using this method.

Grey hydrogen

is a process where natural gas is converted to hydrogen using steam methane reforming. This is the traditional method used in the production of hydrogen. Natural gas is converted to hydrogen by adding steam to a mixture of natural gas and air at a high temperature. The hydrogen produced in this process contains high levels of contaminants, including carbon monoxide and carbon dioxide. These contaminants must be removed from the hydrogen before it is used in the hydrogen fuel cell or other hydrogen applications. Producing clean hydrogen using a grey hydrogen process requires additional steps, equipment and chemicals to remove these contaminants from the hydrogen. These steps add to the cost and energy required to produce hydrogen and can also lead to increased emissions. The Green Hydrogen Process produces clean hydrogen without the need for these additional steps and equipment.

Blue hydrogen

The concept of “blue hydrogen” was proposed as an alternative to green hydrogen. Blue hydrogen is produced through a conventional natural gas reforming process that uses coal rather than natural gas as the fuel source. The production of blue hydrogen results in higher levels of greenhouse gas emissions when compared to the production of green hydrogen. Green hydrogen is produced by steam reforming of natural gas. This generates fewer emissions than conventional natural gas reforming processes because it only releases the energy contained in the natural gas. In contrast, blue hydrogen requires the combustion of coal to generate the heat for the reaction, resulting in greater greenhouse gas emissions.

Green hydrogen is produced by electrolysis of water, which is 50% less carbon intensive than steam reforming. The primary cost of producing green hydrogen is the cost of electricity. Under certain conditions, such as excess wind power or off-peak periods of high electricity prices, the break-even point for green hydrogen production is less than $2/kg H2, making it competitive with other hydrogen production processes.

Low-carbon hydrogen

Low-carbon hydrogen production from CO2 capture and storage (CCS)     is more costly than green hydrogen production. The cost of CCS depends on the local CCS technologies used; generally, these costs will be higher than current renewable energy costs. In addition, the high cost of CO2 capture equipment results in a low overall energy yield during the production process.

Hydrogen can be produced electrochemically from water using existing commercial electrolysis technologies, but this process is thermodynamically challenging and requires a great deal of electricity input (25-60 kWh per KG H2)    . For this reason, the production of low-carbon hydrogen from electrolysis has to date been limited to small-scale applications. The use of renewable electricity to power large-scale electrolyzers is the most promising approach for enabling industrial-scale production of low-carbon hydrogen in the near future.

What we can get from 1 KG of Hydrogen ?

Electrolysis of water to produce hydrogen consumes 62 kWh of electricity per 1 kg of hydrogen produced. When compared to green hydrogen production from steam reforming, electrolysis consumes significantly more energy and has significantly higher environmental consequences. Furthermore, there is the potential for future increases in the price of electricity, which will negatively affect the viability of electrolysis-based hydrogen production.

Reference :

1. Advantages of green hydrogen: A fuel for the clean energy transition (https://www.innovationnewsnetwork.com/advantages-green-hydrogen-fuel-clean-energy-transition/22153/)     
2. The difference between green hydrogen and blue hydrogen (https://www.petrofac.com/media/stories-and-opinion/the-difference-between-green-hydrogen-and-blue-hydrogen/)     
3. Green Hydrogen (https://www.sciencedirect.com/topics/engineering/green-hydrogen )    
4. What is green hydrogen and why do we need it? An expert explains (https://www.weforum.org/agenda/2021/12/what-is-green-hydrogen-expert-explains-benefits/ )    
5. 50 shades of (grey and blue and green)     hydrogen (https://energy-cities.eu/50-shades-of-grey-and-blue-and-green-hydrogen/)     
6. Green hydrogen (https://en.wikipedia.org/wiki/Green_hydrogen )    
7. Electrification of the chemical industry—materials innovations for a lower carbon future (https://link.springer.com/article/10.1557/s43577-021-00243-9 )    
8. Electrification of the chemical industry—materials innovations for a lower carbon future (https://link.springer.com/article/10.1557/s43577-021-00243-9 )    
9. ECONOMICS (https://www.sgh2energy.com/economics#:~:text=COST%20COMPARISON&text=Green%20hydrogen%20produced%20through%20electrolysis,to%20higher%20natural%20gas%20prices.)      

افتتاح اكبر محطة طاقة شمسية في عمان

افتتحت سلطنة عمان أكبر محطة للطاقة الكهربائية النظيفة في البلاد ، بتكلفة استثمارية إجمالية قدرها 155 مليون ريال عماني (403 ملايين دولار) وبطاقة 500 ميغاوات. المحطة المسماة عبري مبنية على مساحة 13 مليون متر مربع وتستخدم حوالي 1.5 مليون لوح شمسي مزدوج الوجه وأكثر من 7000 كيلومتر من الكابلات و 1812 روبوت تنظيف.هذه اللوحات. المشروع عبارة عن شراكة بين القطاعين العام والخاص. وقعت الشركة العمانية لشراء الطاقة والمياه اتفاقية مع مجموعة الخليج للاستثمار بقيادة أكوا باور لإنشاء المشروع بمشاركة مؤسسة الخليج للاستثمار وشركة مشاريع الطاقة البديلة. هذا المصنع مملوك ويتم تشغيله.سينتج المشروع طاقة متجددة لصالح الشركة العمانية لشراء الطاقة والمياه لمدة 15 عاما. هذا هو المشروع الأول في برنامج الطاقة المتجددة في عمان. تستثمر سلطنة عمان في المزيد من مشاريع الطاقة للمساعدة في تنويع مصادر الكهرباء في عمان وتقليل انبعاثات الكربون.

المشروع شراكة بين القطاعين العام والخاص

يمثل المشروع شراكة بين القطاعين العام والخاص ، حيث وقعت شركة عمانية لشراء الطاقة والمياه صفقة مع مجموعة الخليج للاستثمار بقيادة أكوا باور ، بمشاركة مؤسسة الخليج للاستثمار وشركة مشروع الطاقة البديلة. وتمتلك وتدير هذا المصنع.

الانتاجية المتوقعة

 ستنتج محطة الطاقة الطاقة المتجددة لصالح الشركة العمانية لشراء الطاقة والمياه لمدة 15 عامًا ، والمشروع جزء من برنامج الطاقة المتجددة في دولة عمان ، على أساس مفهوم المنتج المستقل ، المشروع الأول.

تنويع مصادر الطاقة

 تعمل دولة عمان على تكثيف مشاريع الطاقة المحلية وسط توجه أكبر نحو مصادر الطاقة المتجددة ، بهدف تنويع مصادر إمداد الطاقة لديها والمساهمة في تقليل انبعاثات الكربون.

مساهمة مشروع عبري في الشبكة

  قال يعقوب بن سيف الكيومي ، الرئيس التنفيذي والمهندس للشركة العمانية لشراء الطاقة والمياه ، إن مشروع محطة عبري للطاقة الشمسية ساهم بنحو 3٪ من الطاقة المولدة في شبكة الكهرباء الرئيسية في الأشهر الأولى من بدء التشغيل.

تقليل الانبعاثات الكربونية

  وأوضح الكيومي أن المحطة لن توفر فقط كمية كبيرة من الغاز وتقليل انبعاثات الكربون بنحو 340 ألف طن سنويًا ، ولكنها ستتحول أيضًا إلى الطاقة المتجددة وتخطي مرحلة التخطيط لبدء المشروع.

رؤية عمان 2040

وأوضح الرئيس التنفيذي للشركة العمانية لشراء الطاقة والمياه أن المشروع يفيد أولويات الدولة التي حددتها رؤية عمان 2040 لحماية البيئة وتنمية الموارد الطبيعية وإشراك القطاع الخاص. سيكون نجاح هذا المشروع نقطة تحول لإطلاق مشاريع أخرى مماثلة في مجال الطاقة المتجددة.

وكشف الكيومي أن المشروع هو أول محطة للطاقة الشمسية يتم توصيلها بالشبكة الرئيسية ، والتي ستعمل على توفير الطاقة لنحو 50 ألف منزل سنويًا وتقليل انبعاثات الكربون ، وهو مثال آخر على قدرة السلطنة على جذب الاستثمار الأجنبي المباشر.

مدة تنفيذ المشروع

  قال محمد أبو نيان ، رئيس مجلس إدارة أكوا باور (الوكالة المنفذة للمشروع) ، إنه على الرغم من وباء كورونا ، تم تسليم مشروع إبلي للطاقة الشمسية في وقت قياسي خلال 13 شهرًا ويقال إنه كبير جدًا. وتشير إلى أن المشروع تم تنفيذه بأيد عمانية ومديرين تنفيذيين.

  وأضاف أن المشروع تم تنفيذه بإجراءات بيئية وصحية وسلامة ممتازة ، وتم تنفيذه لأكثر من 5 ملايين ساعة دون إصابات مهنية ، وفي ذروة طاقته الإنتاجية ، سيخدم المشروع ما يقرب من 50000 أسرة ، ويمكن أن يولد طاقة كافية. تزويدهم بالكهرباء.

المطور  (أكوا باور)

 (أكوا باور) هي شركة سعودية تنشط في السلطنة منذ عام 2011 ، والمشروع هو الثامن في السلطنة في مشاريع الطاقة ، بإجمالي استثمارات في عمان حتى تاريخه حوالي 2.6 مليار دولار.

أهداف سلطنة عمان من الطاقة المتجددة

  تهدف عمان إلى زيادة مساهمة الطاقة المتجددة إلى 11٪ من إنتاج الكهرباء بحلول عام 2023 وإلى 30٪ بحلول عام 2030

المصادر

https://acwapower.com/ar/projects/ibri-2-pv-ipp/

https://apsr.om/pdfs/news/shams-al-dhahirah-notice.pdf

https://omanpwp.om/new/pages.aspx?Pid=136

Oman’s National Energy Strategy aims to source 30% of its electricity from renewable sources by 2030.
Oman Renewable Energy Project Shines in Pursuit of Renewable Energy in Electricity.
Oman seeks to expand its power generation capacity through renewable independent power projects (IPPs).

Oman Vision 2040

Oman vission 2040 is One of the goals of Oman Vision 2040 and the National Energy Strategy is to generate at least 30% of its electricity from renewable sources by 2030.
Oman’s National Petroleum Development Company (PDO), is an early pioneer of large-scale solar energy projects in Oman. In 2015, Petroleum Development Oman (PDO) embarked on his 7MW pilot project of his GlassPoint Miraah concentrating solar power project in the United States. IPPs are expected to create opportunities for US companies in the sale of equipment and services, technology transfer, research and development, and privatization of national assets. Oman’s first waste-to-energy project has received government approval and tenders are expected to open by the second quarter of 2020.

Oman Renewable Goal

However, Oman’s ability to complete these projects is expected to be delayed by budget constraints
Oman is embarking on a number of projects to reach its goal of generating 30% of its electricity from Renewable Energy Projects sources.
These projects include the Dhofar wind farm. His two solar IPPs of mana.

PPA for Renewable Energy Projects in Oman


In February 2019, a consortium led by Japanese company Marubeni signed a Power Purchase Agreement (PPA) with his PDO Oman to develop his 100MW solar project in Amin.
In March 2019, a consortium of Saudi and Kuwaiti companies secured funding for a 500 megawatt (MW) photovoltaic (PV) independent power project (IPP) in Ibri, Oman. Oman Power and Water Procurement Company (OPWP) selected a Gulf company as the preferred bidder in March 2019.
The Beijing-based Asian Infrastructure Investment Bank (AIIB) lent his $60 million out of a total of $275 million, leading his AIIB’s first renewable energy loan in Oman and the region. Financial transactions were critical to the offering’s success.

Ibri Solar Project 500 MWp

References

https://www.acwapower.com/en/projects/ibri-2-pv-ipp/

https://omanpwp.om/new/pages.aspx?Pid=136

As per Oman Standard for Solar PV project on grid , the system should meet the bellow technical requirements at the Point of connection (POC ) :

– The frequency at the POC stays within the range of 47,5Hz to 52,5Hz.
-The voltage at the POC stays within the range 85% to 110 % of the rated voltage.
– Total Harmonic distortion (THD) is:  3% at (as per ASPR) ,or as per DISCO
– Short circuit (Is): 6% of Max switch Capacity.

In case that THD exceed the limit, the electrical filter should be applied after submitting the electrical simulation study.

Please refer OES standard in ASPR

https://www.apsr.om/pdfs/SolarPVSystems/Technical_Guidelines.pdf

https://www.apsr.om/

__________________________________
#solar#renewableenergy
#solar_oman
#omanbusiness
#solar_in_Oman
#renewables
__________________________________